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Abstract. In this research, we give a generalized version of the quantum Montgomery identity

using the quantum integral. We establish some new inequalities of Ostrowski type by means of

newly derived identity. Moreover, we consider the special cases of the newly obtained results

and prove several new and known Ostrowski and midpoint inequalities.
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1. Introduction

Various types of integral inequalities have attracted the attention of several mathematicians

over the last decades. These inequalities play a significant role in the study of various classes of

equations such as integro-differential equations and impulse differential equations. That is why

a vast amount of research activities are being carried out on this subject.

The following is a classical integral inequality associated with the differentiable mappings

(see, [36]):

Theorem 1.1. If the mapping f : [a, b] → R is differentiable on (a, b) and integrable on [a, b] ,

then the following inequality holds:∣∣∣∣∣∣f(κ)− 1

b− a

b∫
a

f(t)dt

∣∣∣∣∣∣ ≤
[
1

4
+

(
κ − a+b

2

)2
(b− a)2

]
(b− a)

∥∥f ′∥∥
∞ ,

for all κ ∈ [a, b] , where ∥f ′∥∞ = sup
t∈(a,b)

|f ′(t)| < +∞. Moreover, 1
4 is the best possible constant.
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Theorem 1.2. [15] Suppose that f : [a, b] → R is a differentiable on (a, b) and integrable on

[a, b] . If |f ′ (κ)| ≤ M , for every κ ∈ [a, b] , then the following inequality∣∣∣∣f (κ)− 1

b− a

∫ b

a
f (t) dt

∣∣∣∣ ≤ M

b− a

[
(κ − a)2 + (b− κ)2

2

]
, (1)

holds.

Following is the well-known Montgomery identity:

Lemma 1.1. [29] If the mapping f : [a, b] → R is differentiable on (a, b) and integrable on

[a, b] , then following identity holds:

f (κ)− 1

b− a

∫ b

a
f (t) dt =

∫ κ

a

t− a

b− a
f ′ (t) dt+

∫ b

κ

t− b

b− a
f ′ (t) dt. (2)

By changing the variables, we can rewrite (2) in the following way:

Lemma 1.2. [37, Lemma 1] Suppose that f : [a, b] → R is differentiable on (a, b) and

integrable on [a, b] . Then the following equality holds:

f (κ)− 1

b− a

∫ b

a
f (t) dt = (b− a)

[∫ b−κ
b−a

0
tf ′ (ta+ (1− t) b) dt (3)

+

∫ 1

b−κ
b−a

(t− 1) f ′ (ta+ (1− t) b) dt

]
.

On the other hand, quantum calculus (shortly, q-calculus) deals with the concept of calculus

without limits, where the classical mathematical results are obtained by taking the limit as

q → 1−.

The study of q-calculus was initiated in the early 20th century after the work of Jackson

(1910) who defined an integral later known as the q-Jackson integral (see, [9, 17, 18, 21, 23]).

In q-calculus, the classical derivative is replaced by the q-difference operator to deal with non-

differentiable functions. For more discussion on this subject, we refer to [3, 13]. Applications of

q-calculus can be found in various disciplines of mathematics and physics (see, [7, 20, 38, 43]).

Many well-known integral inequalities such as Hölder’s inequality, Hermite-Hadamard inequal-

ity, Ostrowski’s inequality, Simpson’s inequality, Newton’s inequality, Cauchy-Bunyakovsky-

Schwarz, Gruss, Gruss-Cebysev and other integral inequalities in classical analysis have been

proved and applied in the setup of q-calculus using the classical concept of convexity. For more

results in this direction, we refer to [1, 2, 5, 6, 10, 11, 12, 19, 22, 24, 26, 28, 30, 31, 32, 34, 35,

40, 42, 44, 45].

The purpose of this paper is to study Ostrowski’s inequalities for q-differentiable preinvex

functions by applying the newly defined concept of qb-integral. We also discuss the relation of

the results obtained herein with comparable results in the existing literature.

The organization of this paper is as follows: In Section 2, we summarize the concept of q-

calculus and some related work in this setup is given. In Section 3, the proof of Montgomery

identity for qb-integral is given. Using the Montgomery identity for qb-integral, Ostrowski’s type

inequalities are obtained. Some special cases of our main results are presented in Section 4.

The relation of the obtained results with the comparable results in the existing literature is also

discussed. Section 5 contains some conclusions and further directions for future research. We

believe that the study initiated in this paper may provide a good source of inspiration to the

researchers working on integral inequalities and their applications.
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2. Preliminaries of q-calculus and some inequalities

The basic notions and findings which are needed in the sequel to prove our crucial results are

reviewed in this section. Throughout this paper, we assume that a < b and 0 < q < 1. Let ω be

a nonempty closed set in Rn, f : ω → R be a continuous function and η (., .) : ω × ω → Rn be a

continuous bifunction.

Definition 2.1. [14] A set ω is said to be an invex set with respect to bifunction η (., .) if

b+ tη (a, b) ∈ ω, ∀ a, b ∈ ω, t ∈ [0, 1] .

The invex set ω is also known as η-connected set.

Definition 2.2. [14] A mapping f is said to be preinvex with respect to an arbitrary bifunc-

tion η (., .) if the following inequality holds:

f (b+ tη (a, b)) ≤ tf (a) + (1− t) f (b) , ∀ a, b ∈ ω, t ∈ [0, 1] .

The function f is called preconcave if −f is preinvex.

Various authors used this definition and offered different kinds of integral inequalities. For

some recent results one can read [14, 16, 27].

Remark 2.1. If we set η (a, b) = a − b, then the definition of preinvex functions reduces to

the definition of convex functions given below;

f (b+ t (a− b)) ≤ tf (a) + (1− t) f (b) , ∀ a, b ∈ ω, t ∈ [0, 1] .

Now, we present some well-known concepts and theorems for q-derivative and q-integral of a

function f on [a, b]. We set the following notation(see, [23]):

[n]q =
1− qn

1− q
= 1 + q + q2 + . . .+ qn−1, q ∈ (0, 1) .

Definition 2.3. [5, 23] For a continuous function f : [a, b] → R, the qa-derivative of f at

κ ∈ [a, b] is characterized by the expression

aDqf (κ) =
f (κ)− f (qκ + (1− q) a)

(1− q) (κ − a)
, κ ̸= a. (4)

If x = a, we define aDqf (a) = lim
κ→a

aDqf (κ) if it is exists and it is finite.

Definition 2.4. [41] Let f : [a, b] → R be a continuous function. Then, the qa-definite

integral on [a, b] is defined by

κ∫
a

f (s) adqs = (1− q) (κ − a)
∞∑
n=0

qnf (qnκ + (1− qn) a) , κ ∈ [a, b] . (5)

Remark 2.2. If a = 0 in (5), then
κ∫
0

f (s) 0dqs =
κ∫
0

f (s) dqs , where
κ∫
0

f (s) dqs is the

familiar q-definite integral (see, [23]) on [0,κ] defined by

κ∫
0

f (s) 0dqs =

κ∫
0

f (s) dqs = (1− q)κ
∞∑
n=0

qnf (qnκ) . (6)

Definition 2.5. If c ∈ (a,κ), then the qa- definite integral on [c,κ] is expressed as

κ∫
c

f (s) adqs =

κ∫
a

f (s) adqs −
c∫

a

f (s) adqs . (7)

Alp et al. [5], proved the following q-Hermite-Hadamard inequality:
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Theorem 2.1. (q-Hermite-Hadamard inequality) Let f : [a, b] → R be a convex differentiable

function on [a, b] and 0 < q < 1. Then, we have

f

(
qa+ b

[2]q

)
≤ 1

b− a

b∫
a

f (κ) adqκ ≤ qf (a) + f (b)

[2]q
.

On the other hand, Bermudo et al. [8], gave the following new definitions of quantum integral

and derivative. In the same paper, the authors proved a new variant of the quantum Hermite-

Hadamard type inequality linked with their newly defined quantum integral:

Definition 2.6. [8] Let f : [a, b] → R be a continuous function. Then, the qb-definite integral

on [a, b] is given by

b∫
a

f (κ) bdqκ = (1− q) (b− a)

∞∑
n=0

qnf (qna+ (1− qn) b) = (b− a)

1∫
0

f (sa+ (1− s) b) dqs .

Definition 2.7. [8] Let f : [a, b] → R be a continuous function. The qb-derivative of f at

κ ∈ [a, b] is given by

bDqf (κ) =
f (qκ + (1− q) b)− f (κ)

(1− q) (b− κ)
, κ ̸= b.

If x = b, we define bDqf (b) = lim
κ→b

bDqf (κ) if it is exists and it is finite.

Theorem 2.2. [8] If f : [a, b] → R is a convex differentiable function on [a, b] and 0 < q < 1.

Then, q-Hermite-Hadamard inequalities are given as follows:

f

(
a+ qb

[2]q

)
≤ 1

b− a

b∫
a

f (κ) bdqκ ≤ f (a) + qf (b)

[2]q
. (8)

Lemma 2.1. [5] For α ∈ R\ {−1}, the following formula holds:

κ∫
a

(s− a)α adqs =
(κ − a)α+1

[α+ 1]q
. (9)

3. Montgomery identity and Ostrowski type inequalities for quantum integrals

In this section, we first prove the generalized version of the quantum Montgomery identity

for qb-definite integrals. Then, by using the established identity, we establish some Ostrowski

type inequalities.

Let us start with the following useful lemma, which is a generalized Montgomery identity for

qb-integral.

Lemma 3.1 (Quantum Montgomery Identity). Let f : I = [b+ η (a, b) , b] → R be a q-

differentiable function such that bDqf is q-integrable on I◦, then the following identity holds:

1

η (b, a)

b∫
b+η(a,b)

f (t) bdq t− f (κ) = η (b, a)

1∫
0

Ψq (t)
bDq f (b+ tη (a, b)) dqt (10)
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where

Ψq (t) =


qt; if t ∈ [0, ℘η] ,

qt− 1; if t ∈ [℘η, 1] ,

and ℘η = b−κ
η(b,a) .

Proof. Using the fundamental properties of quantum integrals and from Definitions 2 and 2, we

obtain that

1∫
0

Ψq (t)
bDq f (b+ tη (a, b)) dqt

=

℘η∫
0

qt bDq f (b+ tη (a, b)) dqt+

1∫
℘η

(qt− 1) bDq f (b+ tη (a, b)) dqt

=

℘η∫
0

qt bDq f (b+ tη (a, b)) dqt+

1∫
0

(qt− 1) bDq f (b+ tη (a, b)) dqt

−
℘η∫
0

(qt− 1) bDq f (b+ tη (a, b)) dqt

=

1∫
0

(qt− 1) bDq f (b+ tη (a, b)) dqt+

℘η∫
0

bDq f (b+ tη (a, b)) dqt

=

1∫
0

qt bDq f (b+ tη (a, b)) dqt−
1∫

0

bDq f (b+ tη (a, b)) dqt

+

℘η∫
0

bDq f (b+ tη (a, b)) dqt

=

1∫
0

qt
f (b+ qtη (a, b)) − f (b+ tη (a, b))

t (1− q) η (b, a)
dqt

−
1∫

0

f (b+ qtη (a, b)) − f (b+ tη (a, b))

t (1− q) η (b, a)
dqt

+

℘η∫
0

f (b+ qtη (a, b)) − f (b+ tη (a, b))

t (1− q) η (b, a)
dqt

=
1

(1− q) η (b, a)

[
(1− q)

∞∑
n=0

qn+1 f
(
b+ qn+1 η (a, b)

)
− (1− q)

∞∑
n=0

qn+1 f (b+ qn η (a, b))

]

− 1

(1− q) η (b, a)

[
(1− q)

∞∑
n=0

f
(
b+ qn+1 η (a, b)

)
− (1− q)

∞∑
n=0

qn f (b+ qn η (a, b))

]
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+
1

(1− q) η (b, a)

[
(1− q)

∞∑
n=0

f
(
b+ qn+1 ℘η η (a, b)

)
− (1− q)

∞∑
n=0

f (b+ qn ℘η η (a, b))

]

=
1

η (b, a)

[ ∞∑
n=0

qn+1 f
(
b+ qn+1 η (a, b)

)
−

∞∑
n=0

qn+1 f (b+ qn η (a, b))

+f (b+ η (a, b))− f (b+ η (a, b))]

− 1

η (b, a)
[f (b)− f (b+ η (a, b))] +

1

η (b, a)
[f (b)− f (b+ ℘ηη (a, b))]

=
1

η (b, a)

[
(1− q)

∞∑
n=0

qn f (b+ qn η (a, b)) − f (b+ η (a, b))

]

− 1

η (b, a)
[− f (b+ η (a, b)) + f (b+ ℘ηη (a, b))]

=
1

(η (b, a))2

b∫
b+η(a,b)

f (κ) bdq t+
1

η (b, a)
[−f (b+ η (a, b)) + f (b+ η (a, b))

− f (b+ ℘ηη (a, b))]

=
1

(η (b, a))2

b∫
b+η(a,b)

f (κ) bdq t− 1

η (b, a)
f (κ) .

Finally, by multiplying the last identity with η (b, a) , we obtain the desired identity. Thus, the

proof is completed. �

Theorem 3.1. We assume that the conditions of Lemma 3.1 hold. If
∣∣bDqf

∣∣p1 is a preinvex

function on I, where p1 ≥ 1, then for 0 < q < 1 we have the following inequality

∣∣∣∣∣∣∣
1

η (b, a)

b∫
b+η(a,b)

f (t) bdq t− f (κ)

∣∣∣∣∣∣∣
≤ η (b, a)

[
A

1− 1
p1

1 (a, b, q,κ)
(∣∣∣ bDqf (a)

∣∣∣p1 A2 (a, b, q,κ) +
∣∣∣ bDqf (b)

∣∣∣p1 A3 (a, b, q,κ)
) 1

p1

+A
1− 1

p1
4 (a, b, q,κ)

(∣∣∣ bDqf (a)
∣∣∣p1 A5 (a, b, q,κ) +

∣∣∣ bDqf (b)
∣∣∣p1 A6 (a, b, q,κ)

) 1
p1

]

where

A1 (a, b, q,κ) =

b−κ
η(b,a)∫
0

qtdqκ =
q

[2]q

(
b− κ
η (b, a)

)2

,

A2 (a, b, q,κ) =

b−κ
η(b,a)∫
0

qt2dqκ =
q

[3]q

(
b− κ
η (b, a)

)3

,
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A3 (a, b, q,κ) =

b−κ
η(b,a)∫
0

qtdqκ −

b−κ
η(b,a)∫
0

qt2dqκ = A1 (a, b, q,κ)−A2 (a, b, q,κ) ,

A4 (a, b, q,κ) =

1∫
b−κ
η(b,a)

(1− qt) dqt =

1∫
0

(1− qt) dqt−

b−κ
η(b,a)∫
0

(1− qt) dqt

=
1− q

[2]q

(
κ − a

η (b, a)

)
+

q

[2]q

(
κ − a

η (b, a)

)2

,

A5 (a, b, q,κ) =

1∫
b−κ
η(b,a)

(
t− qt2

)
dqt =

1∫
0

(
t− qt2

)
dqt−

b−κ
η(b,a)∫
0

(
t− qt2

)
dqt

=
1

[2]q [3]q
− 1

[2]q

(
b− κ
η (b, a)

)2

+
q

[3]q

(
b− κ
η (b, a)

)3

,

and

A6 (a, b, q,κ)

=

1∫
b−κ
b−a

(1− t) (1− qt) dqt

=

1∫
0

(1− t) (1− qt) dqt−

b−κ
η(b,a)∫
0

(1− t) (1− qt) dqt

=

1∫
0

(1− qt) dqt−
1∫

0

(
t− qt2

)
dqt−

b−κ
η(b,a)∫
0

(1− qt) dqt+

b−κ
η(b,a)∫
0

(
t− qt2

)
dqt

= A4 (a, b, q,κ)−A5 (a, b, q,κ) .

Proof. Taking the modulus in Lemma 3.1 and using the power mean inequality for quantum

integrals, we obtain that

∣∣∣∣∣∣∣
1

η (b, a)

b∫
b+η(a,b)

f (t) bdq t− f (κ)

∣∣∣∣∣∣∣
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≤ η (b, a)

1∫
0

|Ψq(t)|
∣∣∣bDqf (b+ tη (a, b))

∣∣∣ dqt

≤ η (b, a)


b−κ
η(b,a)∫
0

qt
∣∣∣bDqf (b+ tη (a, b))

∣∣∣ dqt

+

1∫
b−κ
η(b,a)

(1− qt)
∣∣∣bDqf (b+ tη (a, b))

∣∣∣ dqt


≤ η (b, a)




b−κ
η(b,a)∫
0

qtdqt


1− 1

p1


b−κ
η(b,a)∫
0

qt
∣∣∣bDqf (b+ tη (a, b))

∣∣∣p1 dqt


1
p1

+


1∫

b−κ
η(b,a)

(1− qt)


1− 1

p1


1∫

b−κ
η(b,a)

(1− qt)
∣∣∣bDqf (b+ tη (a, b))

∣∣∣p1 dqt


1
p1



Using the preinvexity of
∣∣bDqf

∣∣p1 , we have

∣∣∣∣∣∣∣
1

η (b, a)

b∫
b+η(a,b)

f (t) bdq t− f (κ)

∣∣∣∣∣∣∣
≤ η (b, a)




b−κ
η(b,a)∫
0

qtdqt


1− 1

p1

×


b−κ
η(b,a)∫
0

qt
(∣∣∣ bDqf (a)

∣∣∣p1 t+ ∣∣∣ bDqf (b)
∣∣∣p1 (1− t)

)
dqt


1
p1

+


1∫

b−κ
η(b,a)

(1− qt)


1− 1

p1

×


1∫

b−κ
η(b,a)

(1− qt)
(∣∣∣ bDqf (a)

∣∣∣p1 t+ ∣∣∣ bDqf (b)
∣∣∣p1 (1− t)

)
dqt


1
p1


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= η (b, a)




b−κ
η(b,a)∫
0

qtdqt


1− 1

p1

×

∣∣∣ bDqf (a)
∣∣∣p1

b−κ
η(b,a)∫
0

qt2dqt+
∣∣∣ bDqf (b)

∣∣∣p1
b−κ
η(b,a)∫
0

(
qt− qt2

)
dqt


1
p1

+


1∫

b−κ
η(b,a)

(1− qt)


1− 1

p1

×

∣∣∣ bDqf (a)
∣∣∣p1 1∫

b−κ
η(b,a)

t (1− qt) dqt+
∣∣∣ bDqf (b)

∣∣∣p1 1∫
b−κ
η(b,a)

(1− t) (1− qt) dqt


1
p1


= η (b, a)

[
A

1− 1
p1

1 (a, b, q,κ)
(∣∣∣ bDqf (a)

∣∣∣p1 A2 (a, b, q,κ) +
∣∣∣ bDqf (b)

∣∣∣p1 A3 (a, b, q,κ)
) 1

p1

+A
1− 1

p1
4 (a, b, q,κ)

(∣∣∣ bDqf (a)
∣∣∣p1 A5 (a, b, q,κ) +

∣∣∣ bDqf (b)
∣∣∣p1 A6 (a, b, q,κ)

) 1
p1

]
which completes the proof. �

Theorem 3.2. We assume that the conditions of Lemma 3.1 hold. Suppose
∣∣bDqf

∣∣p1 is a prein-

vex function on I, for some p1 > 1 with 1
r1

+ 1
p1

= 1. Then, we have∣∣∣∣∣∣∣
1

η (b, a)

b∫
b+η(a,b)

f (t) bdq t− f (κ)

∣∣∣∣∣∣∣ (11)

≤ η (b, a)

( b− κ
η (b, a)

)1+ 1
r1

(
q

[r1 + 1]q

) 1
r1

×

(∣∣∣ bDqf (a)
∣∣∣p1 1

[2]q

(
b− κ
η (b, a)

)2

+
∣∣∣ bDqf (b)

∣∣∣p1 ( b− κ
η (b, a)

− 1

[2]q

(
b− κ
η (b, a)

)2
)) 1

p1

+


1∫

b−κ
η(b,a)

(1− qt)r1 dqt


1
r1

×

(∣∣∣ bDqf (a)
∣∣∣p1 ( 1

[2]q

(
1−

(
b− κ
η (b, a)

)2
))

+
∣∣∣ bDqf (b)

∣∣∣p1 ( q

[2]q
− b− κ

η (b, a)
+

1

[2]q

(
b− κ
η (b, a)

)2
)) 1

p1

 ,

where 0 < q < 1.
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Proof. By taking the modulus in the Lemma 3.1 and using the well-known Hölder’s inequality

for quantum integrals, we obtain that

∣∣∣∣∣∣∣
1

η (b, a)

b∫
b+η(a,b)

f (t) bdq t− f (κ)

∣∣∣∣∣∣∣
≤ η (b, a)

1∫
0

|Ψq(t)|
∣∣∣ bDqf (b+ tη (a, b))

∣∣∣ dqt

≤ η (b, a)


b−κ
η(b,a)∫
0

qt
∣∣∣ bDqf (b+ tη (a, b))

∣∣∣ dqt

+

1∫
b−κ
η(b,a)

(1− qt)
∣∣∣ bDqf (b+ tη (a, b))

∣∣∣ dqt


≤ η (b, a)




b−κ
η(b,a)∫
0

(qt)r1 dqt


1
r1


b−κ
η(b,a)∫
0

∣∣∣bDqf (b+ tη (a, b))
∣∣∣p1 dqt


1
p1

+


1∫

b−κ
η(b,a)

(1− qt)r1 dqt


1
r1


1∫

b−κ
η(b,a)

∣∣∣bDqf (b+ tη (a, b))
∣∣∣p1 dqt


1
p1

 .

Using the assumption that
∣∣bDqf

∣∣p1 is a preinvex function, we have

∣∣∣∣∣∣∣
1

η (b, a)

b∫
b+η(a,b)

f (t) bdq t− f (κ)

∣∣∣∣∣∣∣
≤ η (b, a)




b−κ
η(b,a)∫
0

(qt)r1 dqt


1
r1

×

∣∣∣ bDqf (a)
∣∣∣p1

b−κ
η(b,a)∫
0

tdqt+
∣∣∣ bDqf (b)

∣∣∣p1
b−κ
η(b,a)∫
0

(1− t) dqt


1
p1
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+


1∫

b−κ
η(b,a)

(1− qt)r1 dqt


1
r1

×

∣∣∣ bDqf (a)
∣∣∣p1 1∫

b−κ
η(b,a)

tdqt+
∣∣∣ bDqf (b)

∣∣∣p1 1∫
b−κ
η(b,a)

(1− t) dqt


1
p1

 .

= η (b, a)

( b− κ
η (b, a)

)1+ 1
r1

(
q

[r1 + 1]q

) 1
r1

×

(∣∣∣ bDqf (a)
∣∣∣p1 1

[2]q

(
b− κ
η (b, a)

)2

+
∣∣∣ bDqf (b)

∣∣∣p1 ( b− κ
η (b, a)

− 1

[2]q

(
b− κ
η (b, a)

)2
)) 1

p1

+


1∫

b−κ
η(b,a)

(1− qt)r1 dqt


1
r1

×

(∣∣∣ bDqf (a)
∣∣∣p1 ( 1

[2]q

(
1−

(
b− κ
η (b, a)

)2
))

+
∣∣∣ bDqf (b)

∣∣∣p1 ( q

[2]q
− b− κ

η (b, a)
+

1

[2]q

(
b− κ
η (b, a)

)2
)) 1

p1


which completes the proof. �

4. Some special cases

In this section, some special cases of our main results are discussed and several new results

in the field of Ostrowski and midpoint type inequalities are obtained.

Remark 4.1. If we consider Lemma 3.1, then

(i) On taking the limit as q → 1− in Lemma 3.1, the identity (10) reduces to the following

identity

1

η (b, a)

b∫
b+η(a,b)

f (t) d t− f (κ) (12)

= η (b, a)

 ℘η∫
0

t f ′ (b+ tη (a, b)) dt+

1∫
℘η

(t− 1) f ′ (b+ tη (a, b)) dt

 .

Furthermore, On taking η (b, a) = −η (a, b) = b−a, the identity (12) reduces to [2, Lemma 4].
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(ii) If we set κ = η(a,b)+2b
2 in (12), then we have the following identity

1

η (b, a)

b∫
b+η(a,b)

f (t) d t− f

(
η (a, b) + 2b

2

)

= η (b, a)


1
2∫

0

t f ′ (b+ tη (a, b)) dt+

1∫
1
2

(t− 1) f ′ (b+ tη (a, b)) dt


which was given by Noor et al. in [33, Lemma 3.10].

(iii) On taking the limit q → 1− and η (b, a) = −η (a, b) = b− a in Lemma 3.1, we obtain the

Montgomery identity given in (3).

(iv) On taking κ = a+qb
[2]q

and η (b, a) = −η (a, b) = b− a in Lemma 3.1, we have the following

equality

1

b− a

b∫
a

f (t) bdqt− f

(
a+ qb

[2]q

)

= (b− a)


1

[2]q∫
0

qt bDqf (ta+ (1− t) b) dqt+

1∫
1

[2]q

(qt− 1) bDqf (ta+ (1− t) b) dqt


which was given by Budak in [12].

(v) On letting κ = b+q(b+η(a,b))
[2]q

in Lemma 3.1, we obtain the following new identity

1

η (b, a)

b∫
b+η(a,b)

f (t) bdqt− f

(
b+ q (b+ η (a, b))

[2]q

)

= η (b, a)


q

[2]q∫
0

qt bDqf (b+ tη (a, b)) dqt+

1∫
q

[2]q

(qt− 1) bDqf (b+ tη (a, b)) dqt

 .

Remark 4.2. Let us consider Theorem 3.1. Then,

(i) By considering p1 = 1 in Theorem 3.1, we have the following Ostrwoski inequality

∣∣∣∣∣∣∣
1

η (b, a)

b∫
b+η(a,b)

f (t) bdq t− f (κ)

∣∣∣∣∣∣∣ (13)

≤ η (b, a)
[∣∣∣ bDqf (a)

∣∣∣ (A2 (a, b, q,κ) +A5 (a, b, q,κ))

+
∣∣∣ bDqf (b)

∣∣∣ (A3 (a, b, q,κ) +A6 (a, b, q,κ))
]
.
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Moreover, by taking the limit as q → 1− in (13), we have the following new Ostrowski type

inequality:∣∣∣∣∣∣∣
1

η (b, a)

b∫
b+η(a,b)

f (t) dt− f (κ)

∣∣∣∣∣∣∣
≤ η (b, a)

[∣∣f ′ (a)
∣∣ (A2 (a, b, 1,κ) +A5 (a, b, 1,κ)) +

∣∣f ′ (b)
∣∣ (A3 (a, b, 1,κ) +A6 (a, b, 1,κ))

]
.

(ii) On letting q → 1− and κ = η(a,b)+2b
2 in Theorem 3.1, we obtain the following midpoint

inequality ∣∣∣∣∣∣∣
1

η (b, a)

b∫
b+η(a,b)

f (t) dt− f

(
η (a, b) + 2b

2

)∣∣∣∣∣∣∣ (14)

≤ η (b, a)

8

[(
|f ′ (a)|p1 + 2 |f ′ (b)|p1

3

) 1
p1

+

(
2 |f ′ (a)|p1 + |f ′ (b)|p1

3

) 1
p1

]

which was proved by Sarikaya et al. in [39, Theorem 8].

Moreover, by considering p1 = 1 in the inequality (14), we obtain the following midpoint

inequality: ∣∣∣∣∣∣∣
1

η (b, a)

b∫
b+η(a,b)

f (t) dt− f

(
η (a, b) + 2b

2

)∣∣∣∣∣∣∣ ≤
η (b, a)

8

[∣∣f ′ (a)
∣∣+ ∣∣f ′ (b)

∣∣]

which was established by Sarikaya et al. in [39, Theorem 5].

(iii) By choosing κ = a+qb
[2]q

and η (b, a) = −η (a, b) = b − a, we have the following midpoint

inequality ∣∣∣∣∣∣ 1

b− a

b∫
a

f (t) bdqt− f

(
a+ qb

[2]q

)∣∣∣∣∣∣ (15)

≤ (b− a)

( q

[2]3q

)1− 1
p1

×

(∣∣∣ bDqf (a)
∣∣∣p1 ( q

[2]3q [3]q

)
+
∣∣∣ bDqf (b)

∣∣∣p1 ( q2 + q3

[2]3q [3]q

)) 1
p1

+

(
q

[2]3q

)1− 1
p1

×

(∣∣∣ bDqf (a)
∣∣∣p1 ( 2q

[2]3q [3]q

)
+
∣∣∣ bDqf (b)

∣∣∣p1 (−q + q2 + q3

[2]3q [3]q

)) 1
p1


which was proved by Ali et al. in [2].
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Specifically, by applying the limit as q → 1− and taking p1 = 1, we have the following midpoint

inequality in [25, Theorem 2.2]∣∣∣∣∣∣ 1

b− a

b∫
a

f (t) dt− f

(
a+ b

2

)∣∣∣∣∣∣ ≤ (b− a)

[
|f ′ (a)|+ |f ′ (b)|

8

]
.

(iv) By taking p1 = 1 and η (b, a) = −η (a, b) = b − a in Theorem 3.1, we have the following

Ostrowski type inequality ∣∣∣∣∣∣ 1

b− a

b∫
a

f (t) bdqt− f (κ)

∣∣∣∣∣∣ (16)

≤ (b− a)
[∣∣∣ bDqf (a)

∣∣∣ [A2 (a, b, q,κ) +A5 (a, b, q,κ)]

+
∣∣∣ bDqf (b)

∣∣∣ [A3 (a, b, q,κ) +A6 (a, b, q,κ)]
]
.

(v) By setting p1 = 1, κ = a+qb
[2]q

, and η (b, a) = −η (a, b) = b − a, we have the following

midpoint type inequality in [12],∣∣∣∣∣∣ 1

b− a

b∫
a

f (t) bdqt− f

(
a+ qb

[2]q

)∣∣∣∣∣∣ (17)

≤ (b− a)

[∣∣∣ bDqf (a)
∣∣∣( 3q

[2]3q [3]q

)
+
∣∣∣ bDqf (b)

∣∣∣(−q + 2q2 + 2q3

[2]3q [3]q

)]
.

(vi) On considering p1 = 1,
∣∣ bDqf (κ)

∣∣ ≤ M , q → 1−, and η (b, a) = −η (a, b) = b − a in

Theorem 3.1, we obtain inequality (1).

Remark 4.3. If we consider Theorem 3.2. Then

(i) On taking the limit q → 1− in Theorem 3.2, we obtain the following Ostrowski type

inequality ∣∣∣∣∣∣∣
1

η (b, a)

b∫
b+η(a,b)

f (t) dt− f (κ)

∣∣∣∣∣∣∣
≤ η (b, a)

[(
b− κ
η (b, a)

)1+ 1
r1

(
1

r1 + 1

) 1
r1

×

(∣∣f ′ (a)
∣∣p1 1

2

(
b− κ
η (b, a)

)2

+
∣∣f ′ (b)

∣∣p1 ( b− κ
η (b, a)

− 1

2

(
b− κ
η (b, a)

)2
)) 1

p1

+

(
1

r1 + 1

(
b+ η (a, b)− κ

η (b, a)

)r1+1
) 1

r1

×

(∣∣f ′ (a)
∣∣p1 (1

2

(
1−

(
b− κ
η (b, a)

)2
))

+ |f (b)|p1
(
1

2
− b− κ

η (b, a)
+

1

2

(
b− κ
η (b, a)

)2
)) 1

p1

 .
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(ii) By letting q → 1− and κ = η(a,b)+2b
2 in Theorem 3.2, Theorem 3.2 reduces to [39, Theorem

6].

(iii) By using
∣∣ bDqf (κ)

∣∣ ≤ M and η (b, a) = −η (a, b) = b − a in Theorem 3.2, we have the

following new quantum Ostrowski type inequality∣∣∣∣∣∣ 1

b− a

b∫
a

f (t) bdqt− f (κ)

∣∣∣∣∣∣ (18)

≤ M (b− a)


(
b− κ
b− a

)2
(

q

[r1 + 1]q

) 1
r1

+


1∫

b−κ
b−a

(1− qt)r1 dqt


1
r1 (

κ − a

b− a

) 1
p1

 .

Specifically, by taking the limit as q → 1− in (18), we obtain the following Ostrwoski type

inequality given in [4, Theorem 3 with s=1];∣∣∣∣∣∣ 1

b− a

b∫
a

f (t) dt− f (κ)

∣∣∣∣∣∣ ≤ M (b− a)

(r1 + 1)
1
r1

[(
κ − a

b− a

)2

+

(
b− κ
b− a

)2
]
.

(iv) By choosing κ = a+qb
[2]q

and η (b, a) = −η (a, b) = b − a in Theorem 3.2, we have the

following new midpoint inequality∣∣∣∣∣∣ 1

b− a

b∫
a

f (t) bdqt− f

(
a+ qb

[2]q

)∣∣∣∣∣∣ (19)

≤ (b− a)

( 1

[2]q

)1+ 1
r1

(
q

[r1 + 1]q

) 1
r1

(∣∣∣ bDqf (a)
∣∣∣p1 1

[2]3q
+
∣∣∣ bDqf (b)

∣∣∣p1 2q + q2

[2]3q

) 1
p1

+


1∫

1
[2]q

(1− qt)r1 dqt


1
r1 (∣∣∣ bDqf (a)

∣∣∣p1 2q + q2

[2]3q
+
∣∣∣ bDqf (b)

∣∣∣p1 q3 + q2 − q

[2]3q

) .

Specifically, by taking the limit as q → 1− in (19), we obtain the following midpoint inequality∣∣∣∣∣∣ 1

b− a

b∫
a

f (t) dt− f

(
a+ b

2

)∣∣∣∣∣∣
≤ b− a

4 (r1 + 1)
1
r1

[(
|f ′ (a)|p1 + 3 |f ′ (b)|p1

4

) 1
p1

+

(
3 |f ′ (a)|p1 + |f ′ (b)|p1

4

) 1
p1

]

≤
(
b− a

4

)(
4

r1 + 1

) 1
r1 [∣∣f ′ (a)

∣∣+ ∣∣f ′ (b)
∣∣]

which was proved by Kırmacı in [25].
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5. Conclusions

In this investigation, we have derived a generalized variant of the Montgomery identity em-

ploying the quantum integral. We have proved some new Ostrowsk’s type inequalities for q-

differentiable preinvex functions by using the newly offered identity. We have discussed the

special cases of the newly offered results and obtained several new and known Ostrowski’s and

midpoint inequalities. It is an interesting and new problem that other mathematicians can prove

for different kinds of convexities in their future work.
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